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Abstract. This paper introduces Runa, a mobile manipulator newly de-
veloped for RoboCup@Home 2026 by the PyLoT Robotics team at Kaijo
Junior and Senior High School, and outlines our software development
and contributions. We designed an affordable, modular hardware plat-
form and, on top of Robot Operating System 2 (ROS 2), built a software
stack for object recognition and grasping, speech recognition and synthe-
sis, and task planning using Large Language Models (LLM). Together,
these components aim to deliver a system capable of general-purpose
service tasks.

1 Introduction

PyLoT Robotics is a RoboCup team affiliated with Kaijo Junior and Senior High
School. Founded in 2023 by junior and senior high school students, the team is
fully student-led, covering administration, development, and outreach. We par-
ticipate in regional RoboCup@Home leagues and provide STEM programs for
middle school students, offering hands-on learning in robotics and autonomous
systems. We have steadily improved our stack for perception, grasping, and plan-
ning. This paper reports our progress toward RoboCup@Home 2026, including
spatial object detection using image and point-cloud processing, improved arm
control, and more accurate navigation. We also work to make robotics more
accessible and to grow the community among middle and high school students.
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2 Hardware

Fig. 1. Runa robot platform

PyLoT Robotics develops compact robots designed for high maintainability, as
shown in Figure 1. The chassis utilizes a differential two-wheel drive system,
while the main body features a disassemblable design using an aluminum frame
and Medium Density Fiberboard (MDF), achieving light weight and low cost.
Additionally, 3D-printed parts are used for various connection points, ensuring
excellent maintainability and easy component replacement. The robot’s under-
side houses a Hokuyo UTM-30LX laser scanner for self-localization and naviga-
tion. The central section mounts a 6 Degrees of Freedom (DOF) robotic arm
based on the Openmanipulator-x with modifications, along with various circuit
boards, a small monitor, and an emergency stop button. The upper section
features an Intel RealSense RGB-Depth (RGB-D) camera and an orthogonal
two-axis pan-tilt unit, enabling a wide range of functions including object recog-
nition and obstacle detection. A laptop PC is mounted at the rear center of the
robot body, serving as the computational resource for controlling the robot.
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3 Software

3.1 Software Overview

Fig. 2. System Overview

As illustrated in Figure 2, our system integrates foundation models for end-to-
end task execution. Speech input is transcribed by Whisper and processed by
an LLM to extract user intent. For perception, we combine Detic-based full-
scene segmentation with CLIP zero-shot classification, enabling recognition of
unknown objects in RoboCup environments. Semantic information from these
Vision-Language Models (VLM) is fused into a semantic map that supports
navigation and manipulation planning.

3.2 Speech Recognition

Our system uses Whisper[1] to convert speech into text. Upon dialog start, the
spoken input is converted into text based on predefined prompts, which are then
fed into an LLM such as GPT-4[2]. This enables the robot to simultaneously
understand the user’s intent and determine what tasks to perform.

3.3 Object Detection

To address the unpredictability of RoboCup objects, we adopt a two-stage VLM
pipeline. First, Detic provides open-vocabulary segmentation of all visible ob-
jects, and then CLIP performs prompt-based zero-shot classification. Carefully
crafted prompts further improve recognition accuracy. The resulting semanti-
cally labeled point cloud is used for downstream planning, as shown in Figure 3.
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Fig. 3. Object Detection using Detic

3.4 Grasping

We implemented a custom inverse-kinematics module for our robot arm. Tar-
get object coordinates from semantic perception are transformed into the arm
frame, and joint and Cartesian trajectories are planned in parallel while avoiding
obstacles.

3.5 Task Planning

Fig. 4. Overview of an LLM-based speech-to-plan system

As shown in Figure 4, an LLM-based planner converts natural-language com-
mands into executable action sequences. Leveraging predefined action functions,
object names, and environment information, the system produces structured
plans capable of solving General Purpose Service Robot (GPSR) and Enhanced
GPSR (EGPSR) tasks.
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3.6 Following a person

In our "Following a Person" module, we developed a navigation framework that
couples A*-based global path generation with nonlinear Model Predictive Con-
trol (MPC) for robust trajectory tracking. The A* planner yields collision-free
routes, while the nonlinear MPC controller ensures smooth, stable following in
dynamic environments. This approach improves the robot’s ability to maintain
distance, react to human motion, and navigate safely in cluttered spaces. Our
system performed strongly in the 2025 RoboCup@Home Open Platform League
(OPL) Salvador, achieving one of the highest scores in the Help Me Carry task
and demonstrating the effectiveness of our navigation approach.

3.7 Active SLAM

We developed an Active Simultaneous Localization and Mapping (SLAM) sys-
tem that runs SLAM and navigation concurrently in previously unknown envi-
ronments. By updating the map and planning motion in real time with Slam-
Toolbox[3], the robot localizes accurately and generates reliable paths without
prior environmental information. This enables precise, adaptive movement and
stable navigation in dynamic or unstructured spaces. The approach earned high
scores at both the 2025 RoboCup@Home Japan Open and the 2025 RoboCup@Home
OPL Salvador, demonstrating its effectiveness in real competition settings.

4 Our Research

4.1 Self Recovery Planning using VLM

Fig. 5. Diagram of a robot planning system using VLM

As shown in Figure 5, we aim to boost planning robustness by pairing an LLM
planner with a VLM verifier. The LLM generates an action plan, the Task Ex-
ecutor runs the corresponding functions, and upon state completion, the LLM
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queries the VLM for visual confirmation. Using camera input, the VLM re-
ports task status, and the LLM performs replanning when needed, enabling self-
recovery. Because the VLM has no built-in robot semantics, it focuses on the
target object and target location and generates prompts to assess the running
function. A paper on this topic is currently under conference review.

4.2 Semantic Map using VLM

Fig. 6. Semantic map constructed using VLM

As illustrated in Figure 6, we aim to construct a world environment model with
semantic information so that robots can execute general tasks efficiently. The
world model, which combines location and semantic information, is inspired by
CLIP-Fields[4], and organizes knowledge in a cohesive space.

4.3 Adaptive Pan-Tilt Camera for Target Recognition

Fig. 7. Viewpoint control for target recognition

As shown in Figure 7, prior work assumed the camera always captured all infor-
mation needed for self-recovery. We remove that assumption and build a system
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that actively gathers the missing observations required to complete a task, tar-
geting mobile manipulators that need 360-degree monitoring.

Fig. 8. Viewpoint control system overview

We have constructed a system as shown in Figure 8. Given verbal instruc-
tions, the VLM assesses object relevance and selects camera angles based on
the object distribution. The distribution decays over time, and a gain toward
long-unobserved directions drives simultaneous search.

5 Contribution to STEM Education

PyLoT Robotics expands access to robotics through outreach programs and
step-by-step curricula, contributing to STEM education in our community. We
provide structured courses, documentation, and tools that enable middle school
students to gain early, practical experience in robot development. This hands-on
approach builds skills in programming, mechanical design, and system integra-
tion.

As a result, two junior high school students joined our team and successfully
completed the Receptionist task at the 2025 RoboCup Japan Open @Home
Bridge Competition. Additionally, we achieved one of the highest scores in the
Help Me Carry task at the 2025 RoboCup@Home OPL Salvador, demonstrat-
ing that junior and high school students can perform at an international level.
These outcomes highlight our educational impact and the effectiveness of our
mentorship in fostering the next generation of roboticists.



8

6 Conclusions

This paper presented PyLoT Robotics’s robot platform, scientific contributions,
and approach for the RoboCup@Home 2026 competition. Through participation
in RoboCup@Home, we aim to advance autonomous home service robots and
make robotics more accessible to the public. Aligned with open-source principles,
we will continue to release our code, documentation, and results, and contribute
to the RoboCup community beyond the competition.
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Robot Runa Hardware Description

Fig. 9. Robot Runa

Robot Runa has the custom garbage collection mech-
anism. Specifications are as follows:

– Base: wheel base (differential pair), 2.5m/s max
speed.

– Arm: 7DOF(1 DOF torso, 6DOF manipulator)
– Neck: 2DOF
– Head: Depth Camera, monitor display
– Robot dimensions: height: 1.4m (max), width:

0.6m depth 0.8m
– Robot weight: 30kg.
– RGB-D Sensors: Intel RealSense D435, Intel Re-

alSense D455.
– LiDAR: Hokuyo UTM-30LX
– Microphones: CVM-V30PRO

Robot’s Software Description

For our robot we are using the following software:

– Platform: ROS2 Humble
– Navigation: Navigation2,EMCL
– Face recognition: Yolov8-Pose,Detic,GPT-4o
– Speech recognition: Whisper,Vosk.
– Speech generation: Audio-Common.
– Object recognition: Detic,CLIP,Yolov8
– Arms control: In-house arm motion planner

The following are the specifications of the laptop mounted on our Robot

– CPU: Ryzen7
– GPU: NVIDIA Geforce RTX 3050ti
– Memory: 16GB

Robot software and hardware specification sheet
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